3.448 \(\int \frac {(a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=309 \[ \frac {2 \left (35 a^2 A-77 a b B-45 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (105 a^3 B+245 a^2 A b-161 a b^2 B-15 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{105 a d \sqrt {\tan (c+d x)}}+\frac {(-b+i a)^{5/2} (-B+i A) \tan ^{-1}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 a (7 a B+10 A b) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {(b+i a)^{5/2} (B+i A) \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)} \]

[Out]

(I*a-b)^(5/2)*(I*A-B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/d+(I*a+b)^(5/2)*(I*A+B)*ar
ctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/d+2/105*(245*A*a^2*b-15*A*b^3+105*B*a^3-161*B*a*b
^2)*(a+b*tan(d*x+c))^(1/2)/a/d/tan(d*x+c)^(1/2)-2/35*a*(10*A*b+7*B*a)*(a+b*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(5/2
)+2/105*(35*A*a^2-45*A*b^2-77*B*a*b)*(a+b*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(3/2)-2/7*a*A*(a+b*tan(d*x+c))^(3/2)/
d/tan(d*x+c)^(7/2)

________________________________________________________________________________________

Rubi [A]  time = 1.52, antiderivative size = 309, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3605, 3645, 3649, 3616, 3615, 93, 203, 206} \[ \frac {2 \left (35 a^2 A-77 a b B-45 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (245 a^2 A b+105 a^3 B-161 a b^2 B-15 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{105 a d \sqrt {\tan (c+d x)}}+\frac {(-b+i a)^{5/2} (-B+i A) \tan ^{-1}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 a (7 a B+10 A b) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {(b+i a)^{5/2} (B+i A) \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(9/2),x]

[Out]

((I*a - b)^(5/2)*(I*A - B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d + ((I*a + b)
^(5/2)*(I*A + B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d - (2*a*(10*A*b + 7*a*
B)*Sqrt[a + b*Tan[c + d*x]])/(35*d*Tan[c + d*x]^(5/2)) + (2*(35*a^2*A - 45*A*b^2 - 77*a*b*B)*Sqrt[a + b*Tan[c
+ d*x]])/(105*d*Tan[c + d*x]^(3/2)) + (2*(245*a^2*A*b - 15*A*b^3 + 105*a^3*B - 161*a*b^2*B)*Sqrt[a + b*Tan[c +
 d*x]])/(105*a*d*Sqrt[Tan[c + d*x]]) - (2*a*A*(a + b*Tan[c + d*x])^(3/2))/(7*d*Tan[c + d*x]^(7/2))

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3605

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((b*c - a*d)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e
+ f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m -
 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a*A*d*(b*d*(m - 1) - a*c*(n + 1)) + (b*B*c - (A*b + a*B)*d)*(b*c*(m - 1)
 + a*d*(n + 1)) - d*((a*A - b*B)*(b*c - a*d) + (A*b + a*B)*(a*c + b*d))*(n + 1)*Tan[e + f*x] - b*(d*(A*b*c + a
*B*c - a*A*d)*(m + n) - b*B*(c^2*(m - 1) - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && LtQ[n, -1] && (Inte
gerQ[m] || IntegersQ[2*m, 2*n])

Rule 3615

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[((a + b*x)^m*(c + d*x)^n)/(A - B*x), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3616

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3645

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*d^2 + c*(c*C - B*d))*(a + b*T
an[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), I
nt[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*c
*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b*(d*(B*c - A*d)*(m + n + 1
) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps

\begin {align*} \int \frac {(a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx &=-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {2}{7} \int \frac {\sqrt {a+b \tan (c+d x)} \left (\frac {1}{2} a (10 A b+7 a B)-\frac {7}{2} \left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)-\frac {1}{2} b (4 a A-7 b B) \tan ^2(c+d x)\right )}{\tan ^{\frac {7}{2}}(c+d x)} \, dx\\ &=-\frac {2 a (10 A b+7 a B) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {4}{35} \int \frac {-\frac {1}{4} a \left (35 a^2 A-45 A b^2-77 a b B\right )-\frac {35}{4} \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \tan (c+d x)-\frac {1}{4} b \left (60 a A b+28 a^2 B-35 b^2 B\right ) \tan ^2(c+d x)}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx\\ &=-\frac {2 a (10 A b+7 a B) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (35 a^2 A-45 A b^2-77 a b B\right ) \sqrt {a+b \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)}-\frac {8 \int \frac {\frac {1}{8} a \left (245 a^2 A b-15 A b^3+105 a^3 B-161 a b^2 B\right )-\frac {105}{8} a \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \tan (c+d x)-\frac {1}{4} a b \left (35 a^2 A-45 A b^2-77 a b B\right ) \tan ^2(c+d x)}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx}{105 a}\\ &=-\frac {2 a (10 A b+7 a B) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (35 a^2 A-45 A b^2-77 a b B\right ) \sqrt {a+b \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (245 a^2 A b-15 A b^3+105 a^3 B-161 a b^2 B\right ) \sqrt {a+b \tan (c+d x)}}{105 a d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {16 \int \frac {\frac {105}{16} a^2 \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )+\frac {105}{16} a^2 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{105 a^2}\\ &=-\frac {2 a (10 A b+7 a B) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (35 a^2 A-45 A b^2-77 a b B\right ) \sqrt {a+b \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (245 a^2 A b-15 A b^3+105 a^3 B-161 a b^2 B\right ) \sqrt {a+b \tan (c+d x)}}{105 a d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{2} \left ((a-i b)^3 (A-i B)\right ) \int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} \left ((a+i b)^3 (A+i B)\right ) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx\\ &=-\frac {2 a (10 A b+7 a B) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (35 a^2 A-45 A b^2-77 a b B\right ) \sqrt {a+b \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (245 a^2 A b-15 A b^3+105 a^3 B-161 a b^2 B\right ) \sqrt {a+b \tan (c+d x)}}{105 a d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {\left ((a-i b)^3 (A-i B)\right ) \operatorname {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {\left ((a+i b)^3 (A+i B)\right ) \operatorname {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=-\frac {2 a (10 A b+7 a B) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (35 a^2 A-45 A b^2-77 a b B\right ) \sqrt {a+b \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (245 a^2 A b-15 A b^3+105 a^3 B-161 a b^2 B\right ) \sqrt {a+b \tan (c+d x)}}{105 a d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {\left ((a-i b)^3 (A-i B)\right ) \operatorname {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {\left ((a+i b)^3 (A+i B)\right ) \operatorname {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\\ &=\frac {(i a-b)^{5/2} (i A-B) \tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {(i a+b)^{5/2} (i A+B) \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 a (10 A b+7 a B) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (35 a^2 A-45 A b^2-77 a b B\right ) \sqrt {a+b \tan (c+d x)}}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (245 a^2 A b-15 A b^3+105 a^3 B-161 a b^2 B\right ) \sqrt {a+b \tan (c+d x)}}{105 a d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+b \tan (c+d x))^{3/2}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 6.37, size = 381, normalized size = 1.23 \[ \frac {8 a \left (35 a^2 A-77 a b B-45 A b^2\right ) \tan ^2(c+d x) \sqrt {a+b \tan (c+d x)}-6 a \left (28 a^2 B+60 a A b-35 b^2 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}-5 a \left (24 a^2 A-49 a b B-28 A b^2\right ) \sqrt {a+b \tan (c+d x)}+8 \left (105 a^3 B+245 a^2 A b-161 a b^2 B-15 A b^3\right ) \tan ^3(c+d x) \sqrt {a+b \tan (c+d x)}+420 \sqrt [4]{-1} a \tan ^{\frac {7}{2}}(c+d x) \left ((-a+i b)^{5/2} (B+i A) \tan ^{-1}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+(a+i b)^{5/2} (B-i A) \tan ^{-1}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )\right )-35 a b (a B+4 A b) \sqrt {a+b \tan (c+d x)}-210 a b B (a+b \tan (c+d x))^{3/2}}{420 a d \tan ^{\frac {7}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(9/2),x]

[Out]

(420*(-1)^(1/4)*a*((-a + I*b)^(5/2)*(I*A + B)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b
*Tan[c + d*x]]] + (a + I*b)^(5/2)*((-I)*A + B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b
*Tan[c + d*x]]])*Tan[c + d*x]^(7/2) - 35*a*b*(4*A*b + a*B)*Sqrt[a + b*Tan[c + d*x]] - 5*a*(24*a^2*A - 28*A*b^2
 - 49*a*b*B)*Sqrt[a + b*Tan[c + d*x]] - 6*a*(60*a*A*b + 28*a^2*B - 35*b^2*B)*Tan[c + d*x]*Sqrt[a + b*Tan[c + d
*x]] + 8*a*(35*a^2*A - 45*A*b^2 - 77*a*b*B)*Tan[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]] + 8*(245*a^2*A*b - 15*A*b^
3 + 105*a^3*B - 161*a*b^2*B)*Tan[c + d*x]^3*Sqrt[a + b*Tan[c + d*x]] - 210*a*b*B*(a + b*Tan[c + d*x])^(3/2))/(
420*a*d*Tan[c + d*x]^(7/2))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 1.19, size = 2654465, normalized size = 8590.50 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{9/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(5/2))/tan(c + d*x)^(9/2),x)

[Out]

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(5/2))/tan(c + d*x)^(9/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________